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ABSTRACT

Air quality forecasts produced by the National Air Quality Forecasting Capability (NAQFC) help air

quality forecasters across the United States in making informed decisions to protect public health from

acute air pollution episodes. However, errors in air quality forecasts limit their value in the decision-

making process. This study aims to enhance the accuracy of NAQFC air quality forecasts and reliably

quantify their uncertainties using a statistical–dynamical method called the analog ensemble (AnEn),

which has previously been found to efficiently generate probabilistic forecasts for other applications. AnEn

estimates of the probability of the true state of a predictand are based on a current deterministic numerical

prediction and an archive of prior analogous predictions paired with prior observations. Themethod avoids

the complexity and real-time computational expense of model-based ensembles and is proposed here for

the first time for air quality forecasting. AnEn is applied with forecasts from the CommunityMultiscale Air

Quality (CMAQ) model. Relative to CMAQ raw forecasts, deterministic forecasts of surface ozone (O3)

and particulate matter of aerodynamic diameter smaller than 2.5mm (PM2.5) based on AnEn’s mean have

lower systemic and random errors and are overall better correlated with observations; for example, when

computed across all sites and lead times, AnEn’s root-mean-square error is lower than CMAQ’s by roughly

35% and 30% for O3 and PM2.5, respectively, andAnEn improves the correlation by 50% for O3 and PM2.5.

Probabilistic forecasts from AnEn are statistically consistent, reliable, and sharp, and they quantify the

uncertainty of the underlying prediction.

1. Introduction

Every year poor air quality kills millions of people

worldwide (Forouzanfar et al. 2015), and in the United

States alone it costs society from tens to hundreds of

billions of dollars (Muller and Mendelsohn 2007). Air

quality forecasts are one resource that decision-makers

can use to reduce many threats that poor air quality

poses. However, uncertainty in predictions can reduce

their value in the decision-making process.

A reliable quantification of uncertainty in air quality

forecasts is crucial for determining their value in the

decision-making process. Unfortunately, uncertainty

cannot be completely eliminated from air quality

forecasting, but there are effective ways to treat the

inevitable uncertainty and to reduce its consequences.

One way is through probabilistic ensemble prediction.

In contrast to the deterministic approach of using a single

forecast from a singlemodel, probabilistic information is

obtained from an ensemble that comprises multiple and

meaningfully different forecasts that are valid at the

same future time and location.

Ensembles are beneficial in many ways. The proba-

bilistic guidance they provide is potentially much more

useful for decision-makers than a single forecast could

ever be (Buizza 2008; Palmer 2002). An ensemble’s
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mean forecast tends to be (but is not always) more

skillful than any individual member’s prediction (Delle

Monache et al. 2006a,b, 2008; Delle Monache and Stull

2003; Delle Monache 2010; Djalalova et al. 2010; Du

et al. 1997; Ebert 2001; Galmarini et al. 2001, 2004;

Kioutsioukis et al. 2016; Leith 1974; McKeen et al. 2005;

Potempski et al. 2008; Potempski and Galmarini 2009;

Solazzo et al. 2012; Toth and Kalnay 1997; Ma et al.

2012). Calculating the mean filters out some of the un-

predictable elements of the physical and chemical pro-

cesses being simulated. Another benefit is that the

approximate uncertainty in a mean forecast can be

inferred from the spread among ensemble members

(Kalnay 2003) if the ensemble is calibrated, although

that inference has to be made carefully and is not valid

in every case (Barker 1991; Hopson 2014;Murphy 1988).

Ensembles also produce reliable and well resolved

probabilistic forecasts that can be further improved

through calibration and other methods of postprocess-

ing imperfect numerical predictions. A reliable ensem-

ble is one that over many cases predicts conditions to

occur with the same frequency as they actually occur in

nature. A well-resolved ensemble is one that provides a

probability close to 100% on occasions when an event

(e.g., ozone above 100 ppb) occurs and forecast close to

0%when the event does not occur (i.e., it is specific from

case to case about whether or not a condition will occur).

In air quality forecasting in particular, probabilis-

tic approaches have been recommended as—and have

been demonstrated to be—effective at dealing with the

many sources of uncertainty (e.g., Bei et al. 2010;

Carmichael et al. 2008; Dabberdt et al. 2004; Delle

Monache et al. 2006a,b, 2008; Delle Monache and

Stull 2003; Garaud and Mallet 2010; Kioutsioukis

et al. 2016; Marécal et al. 2015; Mallet 2010; Mallet

et al. 2013; Mallet and Sportisse 2006a,b; McKeen et al.

2005; Pagowski et al. 2005; Zhang et al. 2007, 2012).

Uncertainties stem from meteorological initial and

boundary conditions; the sparse temporal and spatial

distribution of observations, and their errors, which are

assimilated into a model; truncations and approxima-

tions in a model’s numerical schemes; uncertainties in

emission inventories, which are often not well known

nor well characterized in models; and physical or chem-

ical processes that are simplified, poorly understood, or

omitted entirely (Delle Monache and Stull 2003).

Ensemble prediction takes different forms. One of the

simplest is a lagged ensemble (Dalcher et al. 1988; Delle

Monache et al. 2006a; Ebisuzaki and Kalnay 1991;

Hoffman and Kalnay 1983; Lu et al. 2007; Mittermaier

2007). In a lagged ensemble, sequential forecasts from a

deterministic system are grouped together, each with a

common valid time but with different lead times (e.g., an

18-h forecast initialized at 0000 UTC and valid at

1800 UTC, a 15-h forecast initialized at 0300 UTC and

valid at 1800 UTC, and so on). The effectiveness of this

approach depends on how frequently the deterministic

forecasts are updated (Lu et al. 2007; Mittermaier 2007).

Lagged ensembles target uncertainty in the initial

conditions. Similarly, single-model ensembles use dif-

ferent initial conditions, boundary conditions, and/or

perturbed observations to generate diversity even

though the model configuration (including physical pa-

rameterizations) is fixed (e.g., Molteni et al. 1996; Zhang

et al. 2007). Inmodeling air quality, perturbations can be

applied not just to meteorological observations, but also

to emissions, chemistry, and deposition. Considering

different types of perturbations is important for ad-

dressing the nonlinearity of the air quality forecasting

(Delle Monache et al. 2006a,c).

Ensembles based on multiple models are often more

effective but are more complex and computationally

expensive. Multimodel ensembles address uncertainty

in the actual physical or chemical processes being

simulated, not merely in the initial meteorological or

chemical conditions (e.g., Bei et al. 2010; DelleMonache

et al. 2008; Delle Monache and Stull 2003; Djalalova

et al. 2010; Garaud and Mallet 2010; Kioutsioukis et al.

2016; Mallet and Sportisse 2006a,b; McKeen et al. 2005;

Vautard et al. 2012). For the purposes of this article, we

consider what are sometimes called multiphysics en-

sembles to be just one type of multimodel ensemble.

Multimodel ensembles have proved to be a particu-

larly effective tool for probabilistic operational weather

forecasting for quite some time (e.g., Buizza et al. 2005;

Hacker et al. 2011; Krishnamurti 1999). In air quality

forecasting, multimodel ensembles have been success-

fully applied to forecasts of ground-level ozone (e.g.,

McKeen et al. 2005; Solazzo et al. 2012; �Zabkar et al.

2013), airborne particles (e.g., Djalalova et al. 2010;

McKeen et al. 2007), and to both (e.g., Monteiro

et al. 2013).

The complexity and expense of multimodel ensem-

bles and the limitations of single-model ensembles are

two motivations for developing simpler, more cost-

effective, yet still powerful methods for probabilis-

tic prediction—especially hybrid statistical–dynamical

methods. One of such methods, is the analog ensemble

(AnEn), which has been applied successfully to weather

parameters (Delle Monache et al. 2013; Sperati et al.

2017; Alessandrini et al. 2018, 2019), and renewable en-

ergy (Alessandrini et al. 2015a,b; Junk et al. 2015; Davò
et al. 2016; Cervone et al. 2017). The goal of this article is

to explore the applicability of AnEn to air quality

forecasting. While three different AnEn versions, two

of which in combination with a Kalman filter bias
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correction, have been proposed for deterministic air

quality predictions (Djalalova et al. 2015; Huang et al.

2017), in this paper AnEn is evaluated for the first time

for probabilistic air quality predictions. We compare

AnEn’s forecasts of ground-level ozone (O3) and par-

ticulate matter of aerodynamic diameter smaller than

2.5mm (PM2.5) to the simpler probabilistic standard

of a persistence ensemble (PeEn), and to an opera-

tional standard of the industry, the U.S. Environmental

Protection Agency (EPA) Community Multiscale Air

Quality (CMAQ) model (Byun and Schere 2006). The

PeEn can be thought as the probabilistic equivalent of a

deterministic prediction based on persistence, which

can be used as a baseline method for probabilistic

predictions when more advanced ensemble systems are

not available for comparison purposes, as in this study

for air quality predictions. The two ensemble methods,

the CMAQ configuration, and the observations used

for this research are described in section 2. The per-

formance of the ensemble methods and CMAQ against

the observations is assessed in section 3, and the results

are summarized in section 4.

2. Predictive systems and data

a. Analog ensemble

AnEn is a hybrid statistical–dynamical method that

generates an ensemble for estimating the probability of

some future observation of a predictand (e.g., 2-m

dewpoint, geopotential height at 500 hPa, or, in the

case of air quality forecasts, PM2.5) given a current de-

terministic prediction and an archive of historical,

analogous deterministic predictions paired with histor-

ical observations at those predictions’ valid times. That

archive is used to train the AnEn. Typically, the de-

terministic predictions in the training data and the

current deterministic prediction come from the same

configuration of the same NWP or air quality model, or

nearly so. Hamill and Whitaker (2006) demonstrated

the considerable value of using an analog ensemble

approach to calibrate an existing ensemble, and Delle

Monache et al. (2013) proposed a similar approach to

instead generate an ensemble, which forms the basis of

our approach.

If the future observation of a predictand is repre-

sented by y, then the probability distribution of that

future observation is

f (yjxf ) , (1)

where xf 5 (xf
1 , x

f
2 , x

f
3 , . . . , x

f
k) are the k predictors from

the deterministic model forecast. Several steps are in-

volved in generating f(yjxf) (i.e., how an analog is

defined, how its quality is assessed, how many analogs

to select from the archive, and how deep an archive is

necessary, etc.) and can vary from one application of

the AnEn to another. Section 3 goes into more detail

about our application’s sensitivity to some of those

choices.

For determining which historical forecasts are suffi-

ciently analogous to the current forecast, we follow

Delle Monache et al. (2011, 2013), Nagarajan et al.

(2015), and Djalalova et al. (2015), in using the metric

developed by Delle Monache et al. (2011):
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where Ft is the current deterministic forecast for a lo-

cation of interest, valid at some time t in the future;At0 is

an analogous forecast from the archive, valid at some

time t0 in the past, and with the same lead time as the

current forecast’s; Ny is the number of atmospheric

variables (i.e., predictors) used to select analogs;wi is the

weight assigned to each atmospheric variable of index i;

and sfi is the standard deviation of historical forecasts of

each atmospheric variable of index i. The metric is cal-

culated over a range of times from2~t to1~t centered on

the valid time t. The Fi,t1j and Ai,t01j respectively are

each current forecast and each analogous historical

forecast for atmospheric variable index i within that

range of times. We set ~t5 1 h. The forecast interval is

0–48h.

The weights wi for each analog predictor were deter-

mined independently for each observing site as ex-

plained in section 3b. From each search of the archived

datasets, the best 20 analogs were chosen, which for any

given search is 3%–4% of the total cases in the archive

(section 2c). The selection of the number of analogs to

be used is based upon a balance between sampling

enough of the observed distribution of the predictand

variable while ensuring that all analogs are sufficiently

similar to the current prediction.

b. Persistence ensemble

Like Alessandrini et al. (2015a), we use a persistence

ensemble as a baseline method for probabilistic pre-

diction and then demonstrate AnEn’s improvement on

that baseline. For each forecast lead time, PeEn is

based on the most recent 20 observations of O3 or

PM2.5 at the same hour of day as the forecast valid

time. Other tested PeEn configurations (which do not

perform as well as the latter, not shown) include PeEn

formed by the most recent observations collected the

previous seven days over a 3-h window centered on the
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same hour of the day, and a configuration including

observations from the previous four days over a 5-h

window. The PeEn ensemble can be skillful when

similar air quality conditions persist for several days,

or when conditions fluctuate with the same repeating

diurnal pattern. On the other hand, it is challenging for

PeEn to capture rapidly changing patterns of O3

or PM2.5.

c. CMAQ and predictors

Air quality forecasts used in this study are based on

the CMAQmodel, version 5.02 (Byun and Schere 2006),

which is the official Chemistry–Transport Model (CTM)

adopted by the National Air Quality Forecasting

Capability (NAQFC) for operational air quality pre-

dictions over the United States. It is a modular,

Eulerian, Cartesian modeling system that simulates

the emission, production, advection, diffusion, chemical

transformation, and removal of atmospheric pollutants

at regional scales. CMAQ’s daily forecasts of ground-

level concentrations of O3 and PM2.5 at lead times of 0–

48 h and horizontal grid spacing of 12 km are provided as

input to the AnEn’s algorithm. Additional inputs for

AnEn include 10-m wind speed and direction, 2-m air

temperature, 2-m specific humidity, and cloud cover,

which were extracted from the National Centers for

Environmental Prediction (NCEP) North America

Model output that provides meteorological fields nec-

essary to drive CMAQ operationally.

The rational for selecting the aforementioned air

quality and meteorological variables as predictor vari-

ables, which we recognize may not be exhaustive, is as

follows. O3 and PM2.5 allow us to identify pollution ep-

isodes of similar magnitude in the past. Temperature

plays a vital role in several processes relevant to air

quality including atmospheric chemical kinetics, bio-

genic emissions, and mixing. The wind speed and wind

direction allow us to assure that similar transport path-

ways contributed to the analogous air pollution episodes

in the past. Humidity is selected for its key role in the

formation and destruction of both O3 and PM2.5. The

water vapor (H2O) in conjunction with O3 photolysis

is the main source of hydroxyl (OH) radical which in

turn initiates photochemical production of O3 through

oxidation of different volatile organic compounds

(VOCs). In the case of PM2.5, humidity determines the

aerosol water content, which is important for secondary

aerosol formation. Cloud cover determines the amount

of solar radiation available for atmospheric photo-

chemical reactions that produces both O3 and PM2.5. In

summary, the predictors are strategically selected in

such a way that they are not only able to identify the

pollution episodes of similar magnitude in the past but

also identify themeteorological and chemical conditions

leading to similar air pollution episodes in the past.

d. Observations

The source of observations is the EPA AIRNow

network (EPA 2017) in the conterminous United States

and southern Canada (Fig. 1). Hourly concentrations of

O3 and PM2.5 are obtained from 1337 and 551 sites, re-

spectively. All of the observations used in this study are

subjected to a quality control procedure that is suitable

for real-time operational forecasting and described in

detail for PM2.5 in section 2 of Djalalova et al. (2015).

Furthermore, observation sites frequently reporting

missing data are excluded from the analysis presented

in this study (i.e., only stations with at least 50% of data

available are retained). This results in 1045 and 458

sites for O3 and PM2.5, respectively, which are then

used to generate AnEn.

3. Results

This section begins with examples of AnEn’s air

quality forecasts, followed by sensitivity tests of the

ensemble’s algorithm as the number of analogs and the

length of the training data are varied, and a description

of the analog predictor weights. An in-depth analysis of

AnEn’s performance compared to CMAQ’s (for de-

terministic predictions) and PeEn’s (for probabilistic

predictions) is presented afterward. The periods of study

for O3 is from 1 July 2014 to 30 September 2015

(456 days). Given that O3 is a major air quality problem

during summertime, that has been broken down in a

training period from 1 July 2014 to 31May 2015 followed

by a verification period from 1 June to 30 September

2015. Similarly, for PM2.5 whose concentration is higher

in wintertime, the period of study from 1 July 2014 to

29 February 2016 (608 days), has been divided in a pe-

riod of training from 1 July 2014 to 30 November 2015

and a period of verification from 1 December 2015 to

29 February 2016.

a. Examples of forecasts from AnEn, PeEn,
and CMAQ

Figure 2 shows two randomly chosen examples of O3

(top panels) and PM2.5 (bottom panels) predictions

by the methods considered in this study. For O3, both

the AnEn and PeEn ensemble means reduce some of

the CMAQ biases, particularly at night when CMAQ

substantially overestimates O3 concentration. State-of-

the-art CTMs generally struggle to simulate nighttime

O3 because of the challenges in representation of strat-

ified boundary layer. AnEn’s mean is closer to the ob-

servations than the PeEn’s mean. The usefulness of
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probabilistic predictions is evinced for O3 at forecast

lead times 28–30, when the deterministic predictions by

CMAQ and the ensemble means miss the observed

peak, but the ensemble spread from both AnEn and

PeEn indicates a low probability of higher concentra-

tion, which could be useful information for a decision-

maker trying to protect the public from pollution

episodes. Similar qualitative performance of both the

ensembles is also seen for the PM2.5 predictions (Fig. 2,

bottom panels).

b. Sensitivity analysis of the analog ensemble

AnEn’s performance is sensitive to the number of

analogs chosen from the historical dataset (Fig. 3).

FIG. 1. (a) Ozone and (b) PM2.5 observation sites used in this study. Shown are sites for which hourly observations are available for more

(red) or less (blue) than 50% of the time during the two study periods for O3 and PM2.5, which are described at the beginning of section 3.

FIG. 2. Randomly chosen examples of 0–48-h predictions of (top) O3 and (bottom) PM2.5 for (left) AnEn and (right) PeEn at two

different locations and days. CMAQ predictions are in red, and the observations are in black. Both ensemble distributions are depicted

with the mean (dashed line) and the 5–95 and 25–75 interquantile ranges (shading).
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In this study, 15–25 members produced ensemble mean

forecasts of O3 and PM2.5 with the highest correlations

and forecasts of PM2.5 with the lowest RMSEs. The

lowest RMSEs from O3 forecasts were achieved with

10–20 members. This sensitivity motivated our choice of

20 members for this particular study. Other studies will

exhibit different sensitivity and might call for different

measures of AnEn’s performance, not simply RMSE

and correlation.

Figure 3 depicts variations in correlation and RMSE

as a function of the number of analog members for both

ozone and PM2.5. The curves in correlation and RMSE

result from two opposing trends. The increase in the

number of analogs leads to a more thorough sampling of

the statistical relationships between forecasts and ob-

servations in the training data. However, inclusion of

each additional analog decreases the similarity between

it and the current forecast. Under typical circumstances,

the shorter the training period the less likely it is to find

closing matching analogs, which will normally lead to

lower correlations and higher RMSEs.

Another way to measure this sensitivity is to evaluate

AnEn’s performance as a function of training period

with the number of analogs held constant (Fig. 4).

Longer training periods improve AnEn’s performance.

The degree of improvement depends on the variable and

metric. Forecasts of O3 are improved the most. For

PM2.5, there are very small improvements with longer

trainings, particularly for RMSE, with the differences

across the experiments being not statistical significant.

This may reflect the fact that CMAQ is better correlated

to the observations for ozone than for PM2.5, which may

facilitate the algorithm in finding better analogs with a

longer training when applied to ozone.

The weights wi for each of the five variables are de-

termined independently for each observing site ac-

cording to an algorithm that minimized continuous

ranked probability score (CRPS) over the optimization

periods of May 2015 (O3) and November 2015 (PM2.5).

The details on analog predictor optimization strategies

can be found in Junk et al. (2015). The optimization

periods do not overlap with the period over which the

performance metrics have been calculated. Weights can

have values in the 0.0–1.0 range with increments of 0.1,

and the weights of CMAQ O3 and PM2.5 predictors are

set to a minimum of 0.4 for the prediction of O3 and

PM2.5, respectively. Figure 5 shows the distribution of

the weights for each predictor for both O3 (Fig. 5a) and

PM2.5 (Fig. 5b). For the prediction of O3, the predictors

are wind speed (WSPD; m s21) and direction (WDIR;

degrees from N) at 10m AGL, air temperature (T2M;,

8C) at 2m AGL, cloud fraction (CF), and ground-level

concentrations of O3 (ppbv). For PM2.5, the analog

predictors are T2M,WSPD,WDIR, specific humidityQ

(g kg21), and surface PM2.5 (mg m23).

The distributions show the weights’ variability across

the stations. Both O3 and PM2.5 are weighted high for

their respective predictions, as expected. For O3, T2M,

WSPD, and WDIR are weighted similarly, while the

distribution of the weights for CF corresponds to the

lowest values, possibly reflecting themodel lower skill in

predicting this variable. For PM2.5, T2M has the second-

highest median of its weight distribution followed by

WSPD, WDIR, and then Q.

c. Deterministic predictions

When deterministic predictions are evaluated over all

forecasts and observations in our study, AnEn’s mean

forecasts of O3 and PM2.5 are dramatically superior to

the raw forecasts from CMAQ (Fig. 6).

The AnEn significantly improves CMAQ’s raw pre-

diction by reducing RMSE by approximately 35% (O3)

FIG. 3. Sensitivity of AnEn to the number of ensemble members

(i.e., analogs). Shown are AnEn forecasts’ RMSE of (a) O3 (ppbv)

and (c) PM2.5 (mgm23) and correlation of (b) O3 (0.0–1.0) and

(d) PM2.5 (0.0–1.0) vs number of ensemble members (i.e., analo-

gous forecasts selected from the training archive). Calculations are

averages over all lead times and sites during the periods of study

described in the text. Note the different ranges among the y axes.
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and 30% (PM2.5) and bias by 90% (O3) and 95%

(PM2.5), and by improving the correlation by 50% (O3

and PM2.5) when these performance metrics are computed

across all sites and lead times.Themetrics inFig. 6 varywith

lead time because there is diurnal variation in CMAQ’s

skill—which in turn affects AnEn’s performance—

and because observations are distributed across several

time zones.

The AnEn significantly improves CMAQ estimates,

which have been used to generate it. As shown in pre-

vious contributions (e.g., Delle Monache et al. 2011;

Djalalova et al. 2015; Huang et al. 2017), it reduces both

systematic and unsystematic errors, while significantly

improving the correlation with observations. In princi-

pal, given that the analog ensemble estimates are based

on past observations, the AnEn mean should provide

unbiased estimates. However, the residual bias after the

AnEn correction (Figs. 6c,d), is likely due by the fact

that the training dataset is finite, which does not

guarantee that the distribution of the observations

that are the foundation for AnEn fully sample the

predicted PDF.

Figures 7 and 8 show the spatial distribution of the

AnEn improvements (%) over CMAQ in RMSE and

correlation for both O3 and PM2.5, computed indepen-

dently at each available observation site and over

the verification period. For O3, AnEn improves upon

CMAQ (Fig. 7, top panel) almost at every location, with

RMSE reductions up to 60%, and similar improvements

to correlation (Fig. 8, top panel), although not as pro-

nounced as to RMSE. AnEn improves CMAQ across

different land uses, topographical complexities, and

geographic regions, resulting in a capability that can be

considered for real-time forecasting in operational

FIG. 4. Sensitivity of AnEn to length of the training period. Shown are AnEn forecasts’ RMSE of (a) O3 (ppbv)

and (c) PM2.5 (mg m
23) and correlation of (b) O3 (0.0–1.0) and (d) PM2.5 (0.0–1.0) vs lead time (h) for the training

periods indicated by the line styles. Calculations are averages over all sites during the periods of study described in

the text. The number of analogs is 20 in every case. The vertical bars indicate the 95% confidence intervals com-

puted with bootstrapping, which is applied only to the longest training period to reduce clutter.
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centers. For PM2.5, several stations indicate instead a

degradation after the AnEn correction. Specifically,

AnEn correlation is better at about 300 sites out of 458,

with cases where AnEn improves more than 100%.

However, as shown in Fig. 6, overall the correlation for

PM2.5 is improved significantly with AnEn, which can be

explained by the fact that often the degradation happens

where PM2.5 concentration are low (the latter happens

at several locations, not shown).

Furthermore, we examine the performance of AnEn

for extreme events by computing the correlation coef-

ficient, bias, and RMSE for both CMAQ and AnEn

mean time series of ozone and PM2.5 using only the

observations above the 95% quantile computed inde-

pendently at each lead time over the verification period.

The estimated bias and RMSE for extreme events are

shown in Fig. 9. A lower RMSE and higher correlation

coefficient of AnEn mean for both ozone and PM2.5 at

all the lead times shows that AnEn performs relatively

well for the extreme events as well. However, the bias in

AnEn is higher than CMAQ raw forecasts for extreme

events of PM2.5 mainly because of substantial reduction

in the number of available quality analogs when we

consider only extreme events. The RMSE can be de-

composed in bias and centered root-mean-square error

(CRMSE), the first being associated with systematic

errors and the latter with conditional biases and random

errors (Taylor 2001). A lower RMSE even at the lead

times where AnEn bias is higher indicates that AnEn is

reducing the random component of RMSE, CRMSE

(i.e., exhibits a significantly improved predictive capa-

bility than CMAQ for rare events). Future work will

focus on developing a bias correction technique to re-

duce the AnEn bias for the extreme events, similarly

to what proposed by Alessandrini et al. (2019) for

wind speed.

d. Probabilistic predictions

In this section, several attributes of AnEn and PeEn

probabilistic predictions are evaluated to assess their

performances for probabilistic AQ forecasting. These

include the match between the observed and predicted

cumulative PDF, reliability, resolution, statistical con-

sistency, and an analysis of the spread–skill relationships

(Jolliffe and Stephenson 2003; Wilks 2006).

1) OBSERVED VERSUS PREDICTED CUMULATIVE

DISTRIBUTION

The Continuous ranked probability score is computed

to assess the closeness between observed and predicted

PDFs. The CPRS is calculated by comparing the full

ensemble distribution with the observations, where

both predictions and observations are represented as

cumulative distribution functions (CDF; Carney and

Cunningham 2006). It corresponds to the mean absolute

error of deterministic predictions relative to the obser-

vations, and it has the same unit as the forecast variable.

The more the ensemble-derived CDF is sharp and

FIG. 5. Distribution of analog predictor weights across the available stations for (a) O3 and (b) PM2.5. The gray

boxes indicate the 25–75 interquantile range, the black line within the box is the median, filled squares are the

outliers, and the vertical black lines at the edge of the dashed lines are the minimum and maximum excluding the

outliers. Ozone predictors include wind speed (WSPD; m s21) and direction (WDIR; degrees from north) at 10m

AGL, air temperature (T2M; 8C) at 2m AGL, cloud fraction (CF), and ground-level concentrations of O3 (ppbv).

The PM2.5 predictors used in this study are T2M, WSPD, WDIR, specific humidity (Q; g kg21), and surface

PM2.5 (mgm
23).
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FIG. 6. (a),(b) RMSE, (c),(d) bias, and (e),(f) correlation for (left) O3 and (right) PM2.5 vs

lead time in forecasts from CMAQ (black) and AnEn mean (red). Calculations are averages

over all sites during the periods of study described in the text.
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centered on the corresponding observation, the lower

the CRPS is. Zero is a perfect CRPS. CRPS can be

decomposed in its components [i.e., CRPS 5 REL

(reliability) 1 CRPSPOT, where CRPSPOT is the

potential CRPS, with CRPSPOT 5 UNC 2 RES,

where UNC is uncertainty and RES is resolution]. The

potential CRPS is the forecasting system CRPS if it was

perfectly reliable (REL 5 0). For additional details on

CRPSand its components formulation seeHersbach (2000).

As shown in Fig. 10, AnEn has a better (i.e., lower)

CRPS than PeEn for most of the lead times of O3 pre-

dictions, and all lead times of PM2.5, indicating an

overall better predictive probabilistic skill. The distinct

diurnal cycle in each CRPS series is not surprising, given

the diurnal cycle in forecast error (Fig. 6). The better

CRPS of AnEn results from better resolution than PeEn

(about 10% and 15% for O3 and PM2.5, respectively), an

important attribute of probabilistic predictions. The

reliability of the two systems is very similar. Reliability

and resolution are discussed next.

2) RELIABILITY

An ensemble is reliable when its forecast probability

matches the observed relative frequency (i.e., the rate of

occurrence) of a certain condition over a long observa-

tional record. For instance, a reliable ensemble will

predict a 7% probability of ground-level O3 concentra-

tion exceeding a regulatory threshold at some point

during a 24-h period if historically on 7% of days with

similar conditions that threshold was exceeded. For a

given condition (e.g., O3 . 50 ppb), plotting forecast

probabilities from a perfectly reliable model versus

observed relative frequencies will result in a 1:1 di-

agonal line on a reliability diagram (Jolliffe and

Stephenson 2003; Wilks 2006). However, the CRPS

FIG. 7. Improvement (%; colors) to RMSE of forecasts of (top) O3

and (bottom) PM2.5 from AnEn vs CMAQ.

FIG. 8. As in Fig. 7, but for correlation.
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FIG. 9. As in Fig. 6, but with only the observations exceeding the 95% quantile computed

independently over the verification period at each lead time and observation location.
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reliability component provides an indication of over-

all reliability (i.e., not tied to a particular condition).

For the latter, as shown in Fig. 10 and indicated by

‘‘REL,’’ the reliability of AnEn and PeEn are very

similar, and close to the perfect value of zero, indicating

that both probabilistic prediction systems would provide

an end-user with information that is not misleading (i.e.,

that would not lead to over or underconfidence in the

forecast).

3) RESOLUTION

The potential CRPS (‘‘POT’’ in Fig. 10) includes both

uncertainty and resolution (Hersbach 2000). The un-

certainty term is an attribute relative to the observations

only and is the same across different prediction systems.

However, the resolution quantifies the forecasts’ ability

to predict when an event occurs or not, or also the

ability to separate different situations (i.e., the forecast

system predicts a high/low values probability values

correspondent to an occurring/not occurring event).

Probability forecasts with perfect resolution are 100%

on occasions when the event occurs and 0% when the

event does not occur. The CRPS POT values reported in

Fig. 10 show that AnEn has better resolution than PeEn.

This is because AnEn forecasts are designed to capture

errors in the current raw prediction, whereas PeEn in-

cludes the most recent 20 observations of O3 or PM2.5 at

the same hour of day as the forecast valid time, which

may not sample well the observation corresponding to

the current prediction.

4) STATISTICAL CONSISTENCY

If an ensemble is statistically consistent, its members’

forecasts are statistically indistinguishable from obser-

vations (Anderson 1996). If this condition is satisfied,

when ranking an observation against the corresponding

ensemble forecasts, the observation falls with equal

probability in any of the ranks. Over a sufficient num-

ber of cases, when rank frequencies are plotted the re-

sultant rank histogram is statistically flat if an ensemble

is perfectly consistent (Anderson 1996; Hamill 2001;

Talagrand et al. 1997). Rank histograms of forecasts

from AnEn and PeEn are close to flat (Fig. 11). There

is an overall slight high bias across all cases to both

ensembles—shorter bars on the right of the histograms

indicate that observations that fall among the higher

predicted values are less common than those that fall

among low values. The ensembles are also slightly un-

derdispersive (except with AnEn for the ozone predic-

tion) —the U shape at the tops of the bars indicate that

observations that fall within the envelope of the en-

sembles’ spreads are less common than those that fall

outside the envelope, either lower than the lowest

forecast value from a member or higher than the highest

forecast value.

5) SPREAD–SKILL RELATIONSHIP

One way to assess an ensemble system ability to

quantify the prediction uncertainty is by relating the

spread (defined as the standard deviation of the mem-

bers about the ensemble mean) among individual en-

semble members’ forecasts to the skill of their mean

forecast, which is referred to as the spread–skill rela-

tionship (Delle Monache et al. 2013; van den Dool

1989). There are various ways to measure this relation-

ship. Talagrand et al. (1997) reasoned that a statistically

consistent ensemble’s average standard deviation (a

measure of spread) should match the RMSE of its mean

forecast. Hopson (2014) provided insightful commen-

tary on the topic.

FIG. 10. CRPS vs lead time from forecasts of (a) O3 and (b) PM2.5 by AnEn (red) and PeEn (black).
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We find that, indeed, standard deviation and RMSE

correspond very well on average (across the differ-

ent observational sites), especially for forecasts of

PM2.5 (Fig. 12). The correspondence is extremely

robust over the 48-h forecast period, depending much

more strongly on the diurnal cycle than on lead time.

AnEn does not share PeEn’s tendency to be under-

dispersive when forecasts of O3 are less accurate, but

forecasts of PM2.5 from both models are similarly

underdispersive.

One can also assess spread–skill relationship by ex-

amining model error versus spread after the latter is

separated into bins that are subsets of the dataset’s full

range of spread. We find that forecasts from AnEn

exhibit a strong spread–skill relationship according to

this measure, as do forecasts from PeEn (Fig. 13). Both

ensembles are slightly underdispersive when spread is

small, which happens for the majority of bins, and

slightly overdispersive when spread is large (evinced by

the slopes , 1:1 in Fig. 13), a feature that is more

prominent for eastern stations than western ones, which

is consistent with the U-shaped rank histograms in

Fig. 11. The conditional bias displayed in Fig. 13 is

relatively minor, however, and it might decrease with

a larger archive of training cases (Delle Monache

et al. 2013).

FIG. 11. Rank histograms of forecasts of (left) O3 and (right) PM2.5 from (a),(b) AnEn and (c),(d) the persistence

ensemble. The horizontal line indicates the flat rank histogram that would result from a perfect ensemble, with

vertical bars representing the confidence intervals for each bin.
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4. Summary

Conventional air quality predictions are contami-

nated by uncertainties stemming from several sour-

ces, including initial conditions, emission, numerical

approximations, and the simulation (or lack thereof)

of physical and chemical processes. The ability to

estimate these uncertainties in real time enhances

decision-making to protect the public from poor air

quality.

In this study, for the first time the analog ensemble

technique has been applied to generate deterministic

and probabilistic predictions of O3 and PM2.5. The

available datasets span the period from 1 July 2014 to

30 September 2015 (456 days) for predictions of O3

and from 1 July 2014 to 29 February 2016 (608 days)

for predictions of PM2.5. The verification periods to

assess the performances of the predictive systems are

June–September 2015 for O3 and December 2015–

February 2016 for PM2.5. The analysis has been per-

formed with 1045 and 458 stations for O3 and PM2.5,

respectively, across the conterminous United States

and southern Canada. The main findings are the

following:

d The AnEn significantly improves the skill of de-

terministic predictions by reducing the errors of

the deterministic model used to generate it, the

Community Multiscale Air Quality, while increas-

ing its correlation with the observations. For ex-

ample, AnEn’s root-mean-square error is lower

than CMAQ’s by roughly 35% and 30% for O3 and

PM2.5, respectively, when computed across all sites

and lead times.

d AnEn produces a probabilistic prediction that is sta-

tistically consistent, reliable, and sharp. It quantifies

the uncertainty of the underlying prediction, which

could contribute to an increased ability to protect the

public health.
d An analog ensemble can be generated for existing

real-time air quality forecast systems with very small

additional computational cost in real time. However,

an analog ensemble does require an archive of his-

torical simulations from a deterministic model and

observations of the quantity to be predicted, which can

be built offline.

The results reported herein can be further improved

with a longer training dataset (which would require

additional computational resources), by extending

existing training datasets to consider neighboring lo-

cations while searching analogs (at no additional com-

putational cost), and by exploring more predictors for

the analog-matchingmetric. Analog-based approaches, as

other postprocessing methods, may exhibit limited skill

when dealing with wildfire smoke events, particularly if

those are not represented in the input file for emissions.

That challenge can be addressed, at least partially, by in-

cluding in the air quality prediction system a data assim-

ilation component (e.g., assimilating aerosol optical depth

from satellites, which has been shown to significantly im-

prove the characterization of smoke from wildfires in air

quality predictions) (Kumar et al. 2019).

FIG. 12. Dispersion diagrams of forecasts of (a) O3 (ppbv) and (b) PM2.5 (mg m23) from the AnEn (red) and

persistence ensemble (black). RMSE of the ensemble mean is solid; spread is dashed. Vertical bars span the 95%

bootstrap confidence intervals.
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